RIEGL Bathymetry Hard- and Software Solutions



ARBORNE SENSORS

Andrea Spitzer, MASc Application Engineer aspitzer@riegl.com

May 27th, 2014

### AGENDA

- » RIEGL VQ-820-G topo-bathy laser scanner
  - » product specifications» results
- » software add-ons for hydrography
  - » clutter filtering
  - » point classification
  - » water surface modeling
  - » refraction correction

### RIEGL VQ-820-G

### laser scanner for combined topographic and bathymetric applications

www.riegl.com

RIEGL VQ-820-G concept

- combined hydrographic and topographic laser scanner with
  - narrow laser beam
  - high range resolution
  - high measurement rate
  - compact and lightweight design
- dedicated for
  - high-resolution mapping
  - of shallow waters with
  - low turbidity



### BD BRIEGL

#### VQ-820-G product specifications

| wavelength           | 532 nm (visible green light)      |
|----------------------|-----------------------------------|
| measurment range     | 1500 m at ρ ≥ 20%                 |
| topography           | 2500 m at ρ ≥ 60%                 |
| water penetration    | 1 Secchi depth                    |
|                      | bright ground                     |
| ranging accuracy     | 25 mm                             |
| FOV                  | 42°                               |
| beam divergence      | 1 mrad                            |
| measurement rate     | up to 195 kHz<br>50 – 200 lines/s |
| scan speed           |                                   |
| laser Safety         | laser class 3B                    |
| multiple time around | yes, up to 4 pulses in the air    |

VQ-820-G features

- excellently suited for combined land and hydrographic airborne survey
- high-accuracy ranging based on echo digitization and online waveform processing with multiple target capability
- high spatial resolution due to laser repetition rate up to 520 kHz, high scanning speed up to 200 scanlines/second and a wide field of view 42°
- compact, rugged and light-weight modular configuration, compatible with standard airborne platforms.
- optional waveform data output, data accessible via RiWAVELiB
- seamless integration with other *RIEGL* ALS Systems and software packages

#### **RIEGL echo waveform**



#### www.riegl.com

#### **RIEGL's complete system solution**



Innovation in 3D

www.riegl.com

### system integration

### different ways of using RIEGL ALB systems

www.riegl.com

#### VQ-820-G integrated in a helicopter



#### www.riegl.com

#### VQ-820-G integrated in a Tecnam P2006T



#### VQ-820-G integrated in a CASA 212

Innovation in 5

www.riegl.com

ship-borne integration of VQ-820-G

- hydro-archeological survey
- pile dwellings at the Lake Constance





#### VQ-820-G integrated in a UAV – Schiebel Camcopter



#### Innovation in 3D

#### www.riegl.com

### results

### Baltic sea, Atlantic

10 - 10 - 100

floodplains, rivers

www.riegl.com

75 000

#### floodplains example project



floodplain near the Danube / Austria

www.riegl.com

#### floodplains example data - analyzed waterbody



- waterbody 250 m x 50 m x 4 m
- partly covered with ice
- surrounded by mixed vegetation
- powerlines
- 2,500 measurements from surface
- 400,000 subaqueous points

#### floodplains example data - surveying area



www.riegl.com

#### floodplains example data - surveying area



www.riegl.com



floodplains example data - results

- cross-section of the detailed topo-bathy point cloud
- data acquired in a single fly-by



costal survey example data

### surf zone and beach near Rostock/Germany





www.riegl.com

#### sand banks in 4m depth



#### high point density on small structures

#### Innovation in 3D

#### www.riegl.com

#### measurement from eyesafe hight



- broad flight strip from 600 m AGL
- still satisfactory penetration

#### Fjord Mapping – near Stavanger



www.riegl.com

#### Ft. Lauderdale – test project together with NOAA



www.riegl.com

## n'in 3D BRIEGL

#### Ft. Lauderdale – example of the results



zone with lots of seaweeds / very dark sediment

www.riegl.com

#### Ft. Lauderdale – example of the results



#### Innovation in 3D

www.riegl.com

#### Florida Keys – example of the results



www.riegl.com

#### Adriatic Sea - example data



www.riegl.com

#### Adriatic Sea - example data



www.riegl.com

#### large-scale surveying of rivers



- full coverage of riverbed, riverbank, and surrounding area
- requires careful planning concerning precipitation, snowmelt etc.

#### river mouth of Lake Ammersee, Estuary



#### www.riegl.com

#### Isar, Midsize river



#### www.riegl.com

#### Isar, Midsize river





#### www.riegl.com



www.riegl.com

#### what it's all about...



Post-processing of bathymetric LiDAR data is different to topographic LiDAR data. Additional correction due to different medium (air / water) is needed.

Change in  $\rightarrow$  direction  $\rightarrow$  length

#### detection of isolated points



analysis based on number of neighboring points

## on in 3D RIEGL

#### classification of water surface points

- fully automatic approach
- each scan line (strip) is processed independently
- input: geo-referenced scan line with sufficient quality



#### www.riegl.com

## RIEGL

classification of water surface points - outline of method (1)

- 1.) find MLW cells by analyzing point distribution cell by cell
  - "Most Likely Water" cell
  - contains two well-separable point sets (in z-coordinate direction)
  - "upper layer" is supposed to contain water surface points
  - determine z-offset of cell's "upper layer" w.r.t. reference surface

| zUpper   |                                                                                                                | •                               |
|----------|----------------------------------------------------------------------------------------------------------------|---------------------------------|
|          | annen mannen annen a |                                 |
|          |                                                                                                                | 20lisetCell = 20pper – 2ReiSult |
| zRefSurf |                                                                                                                |                                 |

classification of water surface points – outline of method (3)

4.) growth algorithm to find further potential water cells starting from MLW cells



5.) examine potential water cells for water surface points

#### classification of water surface points – examples



typical profiles crossing coast line

www.riegl.com

#### classification of water surface points – examples (2)



water surface (left) vs. low vegetation (right)

#### Innovation in 3D

www.riegl.com

#### generation of a water surface model (WSM)

- generated for each scan (strip) based on classified water surface points
- WSM is represented by grid model (GRCS) aligned to main flight direction
- WSM cell information: height (z<sub>GRCS</sub>) and normal vector



#### www.riegl.com

#### generation of WSM – outline of the method

step 1: consider only cells with sufficiently high point density

- if cell information meets criteria for cell type 1
  - store WSM parameters
- otherwise: cell type 2 or cell type 3



generation of WSM – extrapolation "ocean"

step 2: derive extrapolated WSM for remaining cells – mode "ocean"

assumption: water surface is more or less at the same level (cell of type 1)



Innovation in 3D

generation of WSM – extrapolation "river"

step 2: derive extrapolated WSM for remaining cells – mode "river"

Due to slope: use individual z-offsets instead of a global one.

Note: extrapolation is only done within buffer zone around water surface points



## n in 3D PRIEGL

#### generation of WSM – complete the model

#### step 3: Complete the WSM

#### smoothen extrapolated WSM at transitions to type-1 cells



www.riegl.com

#### generation of WSM – results (1)

WSM in case of high waves (ocean mode):

#### Laser data -28.105 -28.273 -28.442 -28.610 -28.779 -28.947 -29.116 -29.285 -29.453 -29.622 -29.790 -29.959 -30.127 -30.296 -30.464 -30.633 -30.801 -30.970 -31.139 -31.307-31.482 WSM (displayed as normal vector field) and water surface points (z-color-coded)

#### www.riegl.com

#### Innovation in 3D

elevation

generation of WSM – results (2)



WSM (displayed as normal vector field) and water surface points (z-color-coded)



note: WSM is only available in vicinity of water surface points; elsewhere: no-data values

www.riegl.com

#### refraction correction (1)



#### www.riegl.com

#### refraction correction (2)



start point of ray (interpolated from trajectory)

www.riegl.com

#### conclusion

- *RIEGL* VQ-820-G topo-bathy laser scanner successfully employed for a great variety of applications
- quality of water surface model is essential for quality of bathypointcloud
- *RIEGL* provides a fully-automated turnkey solution for point classification and refraction correction
- *RIEGL* software workflow offers interfaces for custom-specific point classification or WSM

www.riegl.com



### www.riegl.com

#### **RIEGL Laser Measurement Systems GmbH**

Riedenburgstraße 48 3580 Horn, Austria Phone +43 2982 4211 office@riegl.com









