German laser bathymetry project: results and experiences

Joachim Niemeyer

Institute of Photogrammetry and GeoInformation (IPI), Leibniz Universität Hannover

Outline

- Project
- Results
 - Coverage Sea Bed
 - Point Densities
 - Accuracy
 - Obstacles
 - Full Waveform Analysis
- Conclusions & Outlook

Outline

- Project
- Results
 - Coverage Sea Bed
 - Point Densities
 - Accuracy
 - Obstacles
 - Full Waveform Analysis
- Conclusions & Outlook

Project

- Basic concepts
 - Conduct three independent annual flight campaigns
 - We want to determine limitations of technique
- BSH and IPI both validate geometric accuracy
- IPI will investigate full waveform data
- Special interests
 - Detection of small obstacles
 - Shallow areas and transition zone to shore

Test Site: Poel

Test Site: Poel

Test Site: Artificial Reefs

Hannover

Institut für Photogrammetrie und GeoInformation

Test Site: Artificial Reefs

Institut für Photogrammetrie und GeoInformation

	2012
Acquisition	31 Oct.– 11 Nov.
Altitude [m]	300, 500, 700
Sensor	Riegl VQ-820G
Depth	1x Secchi
Measurement rate	149 kHz
Sensor	
Depth	
Measurement rate	

	2012	2013
Acquisition	31 Oct 11 Nov.	28 -29 Sept.
Altitude [m]	300, 500, 700	400
Sensor	Riegl VQ-820G	AHAB Chiroptera
Depth	1x Secchi	1x Secchi
Measurement rate	149 kHz	18 kHz
Sensor		AHAB HawkEye II
Depth		3x Secchi
Measurement rate		4 kHz
	riegl.com	airbornehydro.com

Institut für Photogrammetrie und GeoInformation

* Additional flight with HawkEye III in autumn 2014

Leibniz

Universität

Hannover

11

100

	2012	2013	2014
Acquisition	31 Oct.– 11 Nov.	28 - 29 Sept.	5-13 May*
Altitude [m]	300, 500, 700	400	400
Sensor	Riegl VQ-820G	AHAB Chiroptera	AHAB Chiroptera
Depth	1x Secchi	1x Secchi	1x Secchi
Measurement rate	149 kHz	18 kHz	18 kHz
Sensor		AHAB HawkEye II	
Depth		3x Secchi	
Measurement rate		4 kHz	
	ried.com	airbornehydro.com	airbornehydro.com

* Additional flight with HawkEye III in autumn 2014

	2012	2013	2014
Acquisition			5-13 May*
Altitude [m]		AHAB Airborne Hydrography AB	400
Sensor	Riegl VQ-820G	AHAB Chiroptera	AHAB Chiroptera
Depth	1x Secchi	1x Secchi	1x Secchi
Measurement rate	149 kHz	18 kHz	18 kHz
Sensor		AHAB HawkEye II	
Depth		3x Secchi	
Measurement rate		4 kHz	
		airbornebydro.com	
	riegl.com	andomenyuro.com	airbornehydro.com

- 1st flight RIEGL
 - Secchi depth ~ 6m
 - Achieved depths ~4.5m
- 2nd flight AHAB
 - Secchi depth ~ 6m
 - Achieved depths:
 - Chiroptera ~6.5m & HawkEye II ~14m
 - Delivery of processed data: End of April 2014
 - depths still up to 70 cm to high

Outline

- Project
- Results
 - Coverage Sea Bed
 - Point Densities
 - Accuracy
 - Obstacles
 - Full Waveform Analysis
- Conclusions & Outlook

Point distribution

	RIEG	R
--	------	---

Amount of points	181.876.581	
Area [km ²]	220	
Noise	0,31 %	568.358
Water surface	22,08 %	40.159.065
Sea bed	39,29 %	71.460.309
Vegetation underwater	0,03 %	45.566
Land	38,30 %	69.643.282

Amount of sea bed points

normalized by area of each depth level

Covered area

- Actually covered area compared to approximated area (from echo sounding) in each depth level
- Rough approximation!

Covered area - Flight 1

• Riegl: 70,607,093 points

• Chiroptera: 140,910,079 points

Covered area - Flight 2

- HawkEye II: 6,880,026 points
- Mean: ~ 9.8 m (offset ~70 cm)

• Chiroptera & HawkEye II: 147,790,105 points

Covered area - Flight 1

• Riegl: 70,607,093 points

Covered area - Flight 2

Chiroptera & HawkEye II: 147,790,105 points

Remarks (1)

 No flight permission for lowest altitude (300 m) of Area II in highlighted part due to migrating birds

• Flight altitude proposed by company seems to offer a good cost-benefit ratio

Remarks (2)

- Data gaps in the north of Poel
 - Depth 1-2m; sea bed points detected only rarely
 - Riegl VQ-820G and HawkEye II

Remarks (2)

- Data gaps in the north of Poel
 - Depth 1-2m; sea bed points detected only rarely
 - Riegl VQ-820G and HawkEye II
 - Reason: underwater vegetation

Outline

- Project
- Results
 - Coverage Sea Bed
 - Point Densities
 - Accuracy
 - Obstacles
 - Full Waveform Analysis
- Conclusions & Outlook

Point Density

Point Density

Outline

- Project
- Results
 - Coverage Sea Bed
 - Point Densities
 - Accuracy
 - Obstacles
 - Full Waveform Analysis
- Conclusions & Outlook

- Grid of laser data (2m)
- Difference: reference laser grid

Outline

• Project

Results

- Coverage Sea Bed
- Point Densities
- Accuracy
- Obstacles
- Full Waveform Analysis
- Conclusions & Outlook

Detection of Obstacles

No obstacles detected (no points close to objects from database)

- Some objects identified
- Some object points are wrongly classified
- Development and improvement of (automatic) classification algorithms necessary!

Outline

• Project

Results

- Coverage Sea Bed
- Point Densities
- Accuracy
- Obstacles
- Full Waveform Analysis

Conclusions & Outlook

• Standard

• Obstacle

• Very shallow water

- No separation of echoes possible
- One peak from water surface and sea bed

• In most cases of water surface and sea bed points only one return

	Water surface	Sea bed
points	40,123,429	71,449,969
single returns	96.7 %	95.2 %

- Waveforms are accessible by AHAB Software LiDAR Survey Studio
- Seems to be promising
- Future work: Detection of small objects possible?

Outline

- Project
- Results
 - Coverage Sea Bed
 - Point Densities
 - Accuracy
 - Obstacles
 - Full Waveform Analysis
- Conclusions & Outlook

Conclusions

- Laser bathymetry interesting for shallow regions
- Combination of shallow and deep water sensors yields good results.
- Sensors are also able to acquire topographic data
 → cooperation with other authorities possible

Outlook

- Evaluation of 2nd and 3rd flight
- Analysis of full waveform data
- Economic efficiency of laser bathymetry compared to echo sounding

